28 research outputs found

    Osteoarthritis:Mechanistic Insights, Senescence, and Novel Therapeutic Opportunities

    Get PDF
    Osteoarthritis (OA) is the most common joint disease. In the last years, the research community has focused on understanding the molecular mechanisms that led to the pathogenesis of the disease, trying to identify different molecular and clinical phenotypes along with the discovery of new therapeutic opportunities. Different types of cell-to-cell communication mechanisms have been proposed to contribute to OA progression, including mechanisms mediated by connexin43 (Cx43) channels or by small extracellular vesicles. Furthermore, changes in the chondrocyte phenotype such as cellular senescence have been proposed as new contributors of the OA progression, changing the paradigm of the disease. The use of different drugs able to restore chondrocyte phenotype, to reduce cellular senescence and senescence-associated secretory phenotype components, and to modulate ion channel activity or Cx43 appears to be promising therapeutic strategies for the different types of OA. In this review, we aim to summarize the current knowledge in OA phenotypes related with aging and tissue damage and the new therapeutic opportunities currently available

    ELECTRON: An Architectural Framework for Securing the Smart Electrical Grid with Federated Detection, Dynamic Risk Assessment and Self-Healing

    Get PDF
    The electrical grid has significantly evolved over the years, thus creating a smart paradigm, which is well known as the smart electrical grid. However, this evolution creates critical cybersecurity risks due to the vulnerable nature of the industrial systems and the involvement of new technologies. Therefore, in this paper, the ELECTRON architecture is presented as an integrated platform to detect, mitigate and prevent potential cyberthreats timely. ELECTRON combines both cybersecurity and energy defence mechanisms in a collaborative way. The key aspects of ELECTRON are (a) dynamic risk assessment, (b) asset certification, (c) federated intrusion detection and correlation, (d) Software Defined Networking (SDN) mitigation, (e) proactive islanding and (f) cybersecurity training and certification

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Motion control algorithm and tuning rules for mechanical devices with low sampling-rate electronics

    No full text
    Controlling mechanical systems with position and velocity cascade loops is one of the most effective methods to operate this type of systems. However, when using low-rate sampling electronics, the implementation is not trivial and the resulting performance can be poor. This paper proposes effective tuning rules that only require establishing the bandwidth of the inner velocity loop and an estimation of the inertia of the mechanism. Since discrete-time mechatronic systems can also exhibit unstable behavior, several stability conditions are also derived. By using the proposed methodology, a P-PI control algorithm is developed for a desktop haptic device, obtaining good experimental performance with low sampling-rate electronics

    Haptic Performance Using Voltage-Mode Motor Control

    No full text
    corecore